Urea Cycle


About 80% of the body’s excreted nitrogen is in the form of urea which is also largely made in the liver, in a series of reactions that are distributed between the mitochondrial matrix and the cytosol. The series of reactions that form urea is known as the Urea Cycle (Ornithine Cylce) or the Krebs-Henseleit Cycle. The essential features of the urea cycle reactions and their metabolic regulation are as follows: Arginine from the diet or from protein breakdown is cleaved by the cytosolic enzyme arginase, generating urea and ornithine. In subsequent reactions of the urea cycle a new urea residue is built on the ornithine, regenerating arginine and perpetuating the cycle. Ornithine arising in the cytosol is transported to the mitochondrial matrix, where ornithine transcabamoylase catalyzes the condensation of ornithine with carbamoyl phosphate, producing citrulline. The energy for the reaction is provided by the high-energy anhydride of carbamoyl phosphate. The product, citrulline, is then transported to the cytosol, where the remaining reactions of the cycle take place. The synthesis of citrulline requires a prior activation of carbon and nitrogen as carbamoyl phosphate (CP). The activation step requires 2 equivalents of ATP and the mitochondrial matrix enzyme carbamoyl phosphate synthetase-I (CPS-I). In a 2-step reaction, catalyzed by cytosolic argininosuccinate synthetase, citrulline and aspartate are condensed to form argininosuccinate. The reaction involves the addition of AMP (from ATP) to the amido carbonyl of citrulline, forming an activated intermediate on the enzyme surface (AMP-citrulline), and the subsequent addition of aspartate to form argininosuccinate. Arginine and fumarate are produced from argininosuccinate by the cytosolic enzyme argininosuccinate lyase. In the final step of the cycle arginase cleaves urea from aspartate, regenerating cytosolic ornithine, which can be transported to the mitochondrial matrix for another round of urea synthesis. The fumarate, generated via the action of arginiosuccinate lyase, is reconverted to aspartate for use in the argininosuccinate synthetase reaction.

Pathway legend Zoom in

Pathway Image

Pathway legend Zoom in

References

  1. Lehninger, A.L. (2005) Lehninger principles of biochemistry (4 th ed.). New York: W.H Freeman.
  2. Salway, J.G. (2004) Metabolism at a glance (3 rd ed.). Alden, Mass. : Blackwell Pub.