Gluconeogenesis


Gluconeogenesis, which is essentially the reverse of glycolysis, results in the generation of glucose from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. In animals, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of kidneys. This process occurs during periods of fasting, starvation, or intense exercise. Gluconeogenesis is often associated with ketosis. Several non-carbohydrate carbon substrates can enter the gluconeogenesis pathway. One common substrate is lactic acid, formed during anaerobic respiration in skeletal muscle. Lactate may also come from red blood cells, which obtain energy solely from glycolysis as they have no membrane-bound organelles for aerobic respiration. Lactate is transported back to the liver where it is converted into pyruvate by the Cori cycle using the enzyme lactate dehydrogenase. Pyruvate, the first designated substrate of the gluconeogenic pathway, can then be used to generate glucose. All citric acid cycle intermediates, through conversion to oxaloacetate, amino acids other than lysine or leucine, and glycerol can also function as substrates for gluconeogenesis.

Pathway legend Zoom in

Pathway Image

Pathway legend Zoom in

References

  1. Lehninger, A.L. (2005) Lehninger principles of biochemistry (4 th ed.). New York: W.H Freeman.
  2. Salway, J.G. (2004) Metabolism at a glance (3 rd ed.). Alden, Mass. : Blackwell Pub.