Felodipine Pathway

Felodipine belongs to the dihydropyridine (DHP) class of calcium channel blockers (CCBs), the most widely used class of CCBs. There are at least five different types of calcium channels in Homo sapiens: L-, N-, P/Q-, R- and T-type. CCBs target L-type calcium channels, the major channel in muscle cells that mediates contraction. Similar to other DHP CCBs, felodipine binds directly to inactive calcium channels stabilizing their inactive conformation. Since arterial smooth muscle depolarizations are longer in duration than cardiac muscle depolarizations, inactive channels are more prevalent in smooth muscle cells. Alternative splicing of the alpha-1 subunit of the channel gives felodipine additional arterial selectivity. At therapeutic sub-toxic concentrations, felodipine has little effect on cardiac myocytes and conduction cells.

This pathway depicts the pharmacological action of felodipine on arterial smooth muscle cells. Felodipine decreases arterial smooth muscle contractility and subsequent vasoconstriction by inhibiting the influx of calcium ions through L-type calcium channels. Calcium ions entering the cell through these channels bind to calmodulin. Calcium-bound calmodulin then binds to and activates myosin light chain kinase (MLCK). Activated MLCK catalyzes the phosphorylation of the regulatory light chain subunit of myosin, a key step in muscle contraction. Signal amplification is achieved by calcium-induced calcium release from the sarcoplasmic reticulum through ryanodine receptors. Inhibition of the initial influx of calcium decreases the contractile activity of arterial smooth muscle cells and results in vasodilation. The vasodilatory effects of felodipine result in an overall decrease in blood pressure. Felodipine may be used to treat mild to moderate essential hypertension.

Pathway legend Zoom in Zoom out

Pathway Image

Pathway legend Zoom in Zoom out


  1. Plendil. (2009). [Electronic version]. e-CPS. Retrieved August 13, 2009.
  2. Striessnig, J. (2004). Ca 2+ channel blockers. In S. Offermanns, & W. Rosenthal (Eds.). Encyclopedic reference of molecular pharmacology (pp. 201-207). Berlin, Germany: Springer.