Carnitine Synthesis


Carnitine is an ammonium compound that exists in two stereoisomers, of which only L-carnitine is biologically active. Carnitine can be obtained from dietary sources and also biosynthesized. It is necessary for fatty acid oxidation, transporting fatty acids from the cystosol to the mitochondria, where they are broken down via the citric acid cycle to release energy. Carnitine is synthesized from lysine residues in existing proteins. These residues are methylated using lysine methyltransferase enzymes and methyl groups from S-adenosylmethionine, then removed from the protein via hydrolysis. In the next step, the N6,N6,N6-trimethyl-L-lysine is converted to 3-hydroxy-N6,N6,N6-trimethyl-L-lysine t via the mitochondrial enzyme trimethyllysine dioxygenase. The 3-hydroxy-N6,N6,N6-trimethyl-L-lysine is then cleaved to 4-trimethylammoniobutanal and glycine, likely by an aldose identical to serine hydroxymethyltransferase. Next, 4-trimethylammoniobutanal is oxidized by the 4-trimethylaminobutyraldehyde dehydrogenase protein to 4-trimethylammoniobutanoic acid. Finally, 4-trimethylammoniobutanoic acid is transformed into L-carnitine via the enzyme gamma-butyrobetaine dioxygenase. The reactions in the carnitine synthesis pathway occur ubiquitously in the human body with the exception of the last step, as the gamma-butyrobetaine dioxygenase enzyme is found only in the liver and kidney (and at very low levels in the brain). The produced carnitine is then carried to other tissue via a number of transport systems.

Pathway legend Zoom in

Pathway Image

Pathway legend Zoom in

References

Kerner J., Hoppel C. (1998). Genetic disorders of carnitine metabolism and their nutritional management. Annual Review of Nutrition, 18, 179-206. PMID: 9706223
Rebouche C.J. (1991). Ascorbic acid and carnitine biosynthesis. American Journal of Clinical Nutrition, 54(6 Suppl), 147S-1152S. PMID: 1962562