Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.

Filter by Pathway Type:



Showing 101 - 110 of 49833 pathways
SMPDB ID Pathway Chemical Compounds Proteins

SMP0015896

Pw016768 View Pathway
Metabolic

De Novo Triacylglycerol Biosynthesis

A triglyceride (TG, triacylglycerol, TAG, or triacylglyceride) is an ester derived from glycerol and three fatty acids. De novo biosynthesis of triglycerides is also known as the phosphatidic acid pathway, and it is mainly associated with the liver and adipose tissue. All membrane-localized enzymes are coloured dark green in the image. First, dihydroxyacetone phosphate (or glycerone phosphate) from glycolysis is used by the cytosolic enzyme glycerol-3-phosphate dehydrogenase [NAD(+)] to synthesize sn-glycerol 3-phosphate. Second, the mitochondrial outer membrane enzyme glycerol-3-phosphate acyltransferase esterifies an acyl-group to the sn-1 position of sn-glycerol 3-phosphate to form 1-acyl-sn-glycerol 3-phosphate (lysophosphatidic acid or LPA). The next three steps are localized to the endoplasmic reticulum membrane. The enzyme 1-acyl-sn-glycerol-3-phosphate acyltransferase converts LPA into phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by esterifying an acyl-group to the sn-2 position of the glycerol backbone. Next, magnesium-dependent phosphatidate phosphatase catalyzes the conversion of phosphatidic acid into diacylglycerol. Last, the enzyme diacylglycerol O-acyltransferase synthesizes triacylglycerol from diacylglycerol and a fatty acyl-CoA.

SMP0000654

Pw000630 View Pathway
Metabolic

Aerobic Glycolysis (Warburg Effect)

The Warburg Effect refers to the phenomenon that occurs in most cancer cells where instead of generating energy with a low rate of glycolysis followed by oxidizing pyruvate via the Krebs cycle in the mitochondria, the pyruvate from a high rate of glycolysis undergoes lactic acid fermentation in the cytosol. As the Krebs cycle is an aerobic process, in normal cells lactate production is reserved for anaerobic conditions. However, cancer cells preferentially utilize glucose for lactate production via this “aerobic glycolysis”, even when oxygen is plentiful. The Warburg Effect is thought to be the result of mutations to oncogenes and tumour suppressor genes. It may be an adaptation to low-oxygen environments within tumours, the result of cancer genes shutting down the mitochondria, or a mechanism to aid cell proliferation via increased glycolysis. Proliferation may occur due to the accumulation of glycolytic intermediates (which lead to the production of nucleotides, amino acids, and fatty acids) after the final enzymatic reaction of glycolysis (phosphoenolpyruvate into pyruvate) is slowed down. This reaction produces lactic acid which leads to a low pH microenvironment and the lactate shuttle can activate angiogenesis factors from surrounding cells. The Warburg Effect involves numerous pathways, including growth factor stimulation, transcriptional activation, and glycolysis promotion.

SMP0000028

Pw000015 View Pathway
Metabolic

Caffeine Metabolism

Caffeine is obtained from diet including coffee and other beverages and is absorbed in the stomach and small intestine. In the liver, the cytochrome P450 oxidase enzyme system and specifically CYP1A2 metabolizes caffeine into paraxanthine to increase lipolysis and increase free fatty acids and glycerol levels in the blood, theobromine to dilate blood vessels and increase urine volume and theophylline which relaxes bronchi smooth muscles. In the lysosome, these metabolites undergo further metabolism into methyluric acids before being excreted in the urine. There is genetic variability in the metabolism of caffeine due to the polymorphism of CYP1A2. This variability can affect the pharmacokinetic and pharmacodynamic properties of caffeine and may affect an individual's consumption.

SMP0000072

Pw000003 View Pathway
Metabolic

Glutamate Metabolism

Glutamate is one of the non-essential amino acids that is produced by the body. Glutamate is precursor for many nucleic acids and proteins in addition to its role in the central nervous system. It is an excitatory neurotransmitter and has a role in neuronal plasticity, affecting memory and learning. Glutamate plays a role in numerous metabolic pathways. Dysfunctional glutamate metabolism may cause disorders such as: gyrate atrophy, hyperammonemia, γ-hydoxybutyric aciduria, hemolytic anemia, and 5-oxoprolinuria.

SMP0000054

Pw000022 View Pathway
Metabolic

Fatty Acid Elongation in Mitochondria

Cells typically contain large amounts of C18 and C20 fatty acids. Longer chain fatty acids are found in certain specialized tissues (myelin contains high amounts of C22 and C24 components). Even longer chain fatty acids are derived from either dietary sources or from elongation of C16-CoA or C18-CoA formed by the cytoplasmic fatty acid synthetase system. All of the fatty acids needed by the body can be synthesized from palmitate (C16:0) except the essential, polyunsaturated fatty acids such as linoleate and linolenate. To create longer, shorter, oxidized, reduced fatty acids, palmitic acid is subjected to enzymatic reactions by reductases, hydroxylases, elongases and mixed function oxidases. There are 3 major processes that modify palmitic acid: elongation, desaturation and hydroxylation. Elongation of fatty acids may occur at endoplasmic reticulum where fatty acid molecules of length up to C24 may be produced. Mitochondrial elongation may result in fatty acids up to C16 in length. Fatty acid elongation in mitochondria is essentially the reverse of beta-oxidation for fatty acid oxidation. In particular, both pathways make use of acetyl-CoA acyltransferase, 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase. The final step of fatty acid elongation uses enoyl-CoA reductase (not part of the beta-oxidation pathway). The elongation takes place in the mitochondrial matrix. In liver and kidney fatty acid elongation operates best in the presence of both NADH and NADPH, whereas in heart and skeletal muscle, only NADH is required. The mitochondrial pathway is important for elongating fatty acids containing 14 or fewer carbon atoms. Short chain fatty acids (SCFA) are fatty acids with aliphatic tails of less than six carbons. Medium chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6Š—–12 carbons. Long chain fatty acids (LCFA) are fatty acids with aliphatic tails longer than 12 carbons. Very Long chain fatty acids (VLCFA) are fatty acids with aliphatic tails longer than 22 carbons.

SMP0000052

Pw000161 View Pathway
Metabolic

Beta Oxidation of Very Long Chain Fatty Acids

The degradation of fatty acids occurs is many ways, but for the most part in most species it occurs mainly through the beta-oxidation cycle. Take mammals for example, in this subset of species we find that beta-oxidation takes place not only in mitochondria, but in peroxisomes as well. In contrast, it tends to be the case that in plants and fungi beta-oxidation is only seen in peroxisomes. The reason the beta-oxidation cycle is found to occur in both mitochondria and peroxisomes in mammals is thought to be that extremely long chain fatty acids will in fact undergo oxidation in both locations, an initial or first oxidation in peroxisomes and second oxidation in the mitochondria. There is however a difference between the oxidation cycle which occurs in both these organelles. Namely, that the oxidation undergone in peroxisomes does not have any coupling to ATP synthesis, unlike the corresponding oxidation which occurs in the mitochondria. We find rather that electrons are passed to molecules of oxygen, which produces hydrogen peroxide. Moreover, there is an enzyme which is found only peroxisomes which ties into this process. It can turn hydrogen peroxide back into water and oxygen and is catalase. To expound further the differences between the oxidation cycle found in the peroxisomes and the mitchondria consider the following three key differences. One, in the peroxisome the beta-oxidation cycle takes as a necessary input a special enzyme called, peroxisomal carnitine acyltransferase, which is needed to move an activated acyl group from outside the peroxisome to inside it. In mitochondrial oxidation similar but different enzymes are used called carnitine acyltransferase I and II. Difference number two is that oxidation in the peroxisome commences with catalysis induced by an enzyme called acyl CoA oxidase. Also, it should be noted that another enzyme called beta-ketothiolase which aids in peroxisomal beta-oxidation has a substrate specificity which differs from that of the mitochondrial beta-ketothiolase. Turning now to how the oxidation cycle function in mitochondria, note that the mitochondrial beta-oxidation pathway is composed of four repeating reactions that take place with each fatty acid molecule. The oxidation of fatty acid chains is a process of progress through repetition. With each turn of the cycle two carbons are removed from the fatty acid chain and the energy of the chemical bonds once housed by the molecule is captured by the reduced energy carriers NADH and FADH2. Acetyl-CoA is created in this 4 step reaction beta-oxidation process and is sent to the TCA cycle. Once inside the TCA cycle, the process of oxidation continues until even the acetyl-CoA is oxidized to CO2. More NADH and FADH2 result.

SMP0000065

Pw000039 View Pathway
Metabolic

Ubiquinone Biosynthesis

Ubiquinone is also known as coenzyme Q10. It is a 1,4-benzoquinone, where Q refers to the quinone chemical group, and 10 refers to the isoprenyl chemical subunits. Ubiquinone is a carrier of hydrogen atoms (protons plus electrons) and functions as an ubiquitous coenzyme in redox reactions, where it is first reduced to the enzyme-bound intermediate radical semiquinone and in a second reduction to ubiquinol (Dihydroquinone; CoQH2). Ubiquinone is not tightly bound or covalently linked to any known protein complex but is very mobile. In eukaryotes ubiquinones were found in the inner mito-chondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. The benzoquinone portion of Coenzyme Q10 is synthesized from tyrosine, whereas the isoprene sidechain is synthesized from acetyl-CoA through the mevalonate pathway. The mevalonate pathway is also used for the first steps of cholesterol biosynthesis. The enzyme para-hydroxybenzoate polyprenyltransferase catalyzes the condensation of p-hydroxybenzoate with polyprenyl diphosphate to generate ubiquinone.

SMP0000045

Pw000008 View Pathway
Metabolic

Amino Sugar Metabolism

Amino sugars are sugar molecules containing an amine group. They make up many polysaccharides including, glycosaminoglycans or mucopolysaccharides.

SMP0000482

Pw000173 View Pathway
Metabolic

Mitochondrial Beta-Oxidation of Long Chain Saturated Fatty Acids

Fatty acids and their CoA byproducts can be found in many places in the body, playing major roles in many basic functions of the body. These include signalling roles, energy creation roles and enzyme regulation. Beta-oxidation is a process that occurs in the peroxisomes and in the mitochondria, although this pathway is focused on the mitochondrial piece of that process. Depending on the length of the fatty acid, beta-oxidation will either begin in the peroxisomes or the mitochondria. Very long chain fatty acids, fatty acids that consist of more than 22 carbons, can be reduced in the peroxisome where they become octanyl-CoA before moving to the mitochondria for the rest of the oxidation process. Stearoylcarnitine is transported by a mitochondrial carnitine/acylcarnitine carrier protein into the mitochondrial matrix, where it is converted to stearoyl-CoA through the enzyme carnitine o-palmitoyltransferase 2. Stearoyl-CoA then is catalyzed into (2E)-octadecenoyl-CoA by the enzyme long-chain specific acyl-CoA dehydrogenase. Then, enoyl-CoA hydratase converts (2E)-octadecenoyl-CoA into (s)-hydroxyoctadecanoyl-CoA. The pathway continues as hydroxyacyl-coenzyme A dehydrogenase cleaves (s)-hydroxyoctadecanoyl-CoA into 3-oxooctadecanoyl-CoA. 3-oxooctadecanoyl-CoA then uses 3-ketoacyl-CoA thiolase to create acetyl-CoA (necessary for the citric acid cycle) and uses trifunctional enzyme subunits alpha and beta to create palmityl-CoA. This palmityl-CoA is then converted by long-chain specific acyl-CoA dehydrogenase to (2E)-hexadecenoyl-CoA. Enoyl-CoA then converts (2E)-hexadecenoyl-CoA to 3-hydroxyhexadecanoyl-CoA, which is then turned into 3-oxohexadecanoyl-CoA by the enzyme hydroxyacyl-coenzyme A dehydrogenase. 3-ketoacyl-CoA thiolase then creates acetyl-CoA with the help of trifunctional enzyme subunits alpha and beta, which also produce tetradecanoyl-CoA from 3-oxohexadecanoyl-CoA. Long-chain specific acyl-CoA dehydrogenase then converts tetradecanoyl-CoA to (2E)-tetradecenoyl-CoA. (2E)-tetradecenoyl-CoA is then converted by the enzyme enoyl-CoA hydratase into 3-hydroxytetradecanoyl-CoA, which then creates 3-oxotetradecanoyl-CoA through the enzyme hydroxyacyl-coenzyme A dehydrogenase. Finally, the 3 enzymes 3-ketoacyl-coA thiolase, trifunctional enzyme subunit alpha and trifunctional enzyme subunit beta convert 3-oxotetradecanoyl-CoA into acetyl-CoA and lauroyl-CoA which can then be beta-oxidized as medium chain saturated fatty acids.

SMP0000466

Pw000154 View Pathway
Metabolic

Transfer of Acetyl Groups into Mitochondria

Acetyl-CoA is an important molecule, which is precursor to HMG CoA, which is a vital component in cholesterol and ketone synthesis. Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent. Acetyl-CoA is made in the mitochondria by metabolizing fatty acids, and the oxidation of pyruvate of acetyl-CoA. When the body has an excess of ATP, the energy in acetyl-Coa can be stored in the form of fatty acids. Acetyl-CoA must cross the mitochondrial membrane to the cytosol, where fatty acid synthesis takes place. Acetyl-CoA is combined with oxalacetic acid by the enzyme citrate synthase, creating citric acid. Citric acid is then transported out of the mitochondria, to the cytosol, where the enzyme citrate lyase converts citric acid back into acetyl-CoA and oxalacetic acid. Malate dehydrogenase reduces oxalacetic acid to malate, which then is either transported back into the mitochondria by the malate-alpha ketoglutarate transporter or oxidized to pyruvate by malic enzyme. Pyruvate can then be transported back into the mitochondria and undergo decarboxylation into oxalacetic acid. Malate can also be used to create NADH by the conversion of malate to oxalacetic acid by malate dehydrogenase.
Showing 101 - 110 of 49833 pathways