Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 111 - 120 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000020

Pw000010 View Pathway

Arginine and Proline Metabolism

The arginine and proline metabolism pathway illustrates the biosynthesis and metabolism of several amino acids including arginine, ornithine, proline, citrulline, and glutamate in mammals. In adult mammals, the synthesis of arginine takes place primarily through the intestinal-renal axis (PMID: 19030957). In particular, the amino acid citrulline is first synthesized from several other amino acids (glutamine, glutamate, and proline) in the mitochondria of the intestinal enterocytes (PMID: 9806879). The mitochondrial synthesis of citrulline starts with the deamination of glutamine to glutamate via mitochondrial glutaminase. The resulting mitochondrial glutamate is converted into 1-pyrroline-5-carboxylate via pyrroline-5-carboxylate synthase (P5CS). Alternately, the 1-pyrroline-5-carboxylate can be generated from mitochondrial proline via proline oxidase (PO). Ornithine aminotransferase (OAT) then converts the mitochondrial 1-pyrroline-5-carboxylate into ornithine and the enzyme ornithine carbamoyltransferase (OCT -- using carbamoyl phosphate) converts the ornithine to citrulline (PMID: 19030957). After this, the mitochondrial citrulline is released from the small intestine enterocytes and into the bloodstream where it is taken up by the kidneys for arginine production. Once the citrulline enters the kidney cells, the cytosolic enzyme argininosuccinate synthetase (ASS) will combine citrulline with aspartic acid to generate argininosuccinic acid. After this step, the enzyme argininosuccinate lyase (ASL) will remove fumarate from argininosuccinic acid to generate arginine. The resulting arginine can either stay in the cytosol where it is converted to ornithine via arginase I (resulting in the production of urea) or it can be transported into the mitochondria where it is decomposed into ornithine and urea via arginase II. The resulting mitochondrial ornithine can then be acted on by the enzyme ornithine amino transferase (OAT), which combines alpha-ketoglutarate with ornithine to produce glutamate and 1-pyrroline-5-carboxylate. The mitochondrial enzyme pyrroline-5-carboxylate dehydrogenase (P5CD) acts on the resulting 1-pyrroline-5-carboxylate (using NADPH as a cofactor) to generate glutamate. Alternately, the mitochondrial 1-pyrroline-5-carboxylate can be exported into the kidney cell’s cytosol where the enzyme pyrroline-5-carboxylate reductase (P5CR) can convert it to proline. While citrulline-to-arginine production primarily occurs in the kidney, citrulline is readily converted into arginine in other cell types, including adipocytes, endothelial cells, myocytes, macrophages, and neurons. Interestingly, chickens and cats cannot produce citrulline via glutamine/glutamate due to a lack of a functional pyrroline-5-carboxylate synthase (P5CS) in their enterocytes (PMID: 19030957).
Metabolic

SMP0000017

Pw000053 View Pathway

Vitamin B6 Metabolism

As is commonly known there are many vitamins, the vitamin B complex group being one of the most well known. An important vitamin B complex group vitamin is vitamin B6, which is water-soluble. Moreover, this vitamin comes in various forms, one of which is an active form, known by the name pyridoxal phosphate or PLP. PLP serves as cofactor in a variety of reactions including from amino acid metabolism, (in particular in reactions such as transamination, deamination, and decarboxylation). To complicate matters however, there are in fact seven alternate forms of this same vitamin. These include pyridoxine (PN), pyridoxine 5’-phosphate (PNP), pyridoxal (PL), pyridoxamine (PM), pyridoxamine 5’-phosphate (PMP), 4-pyridoxic acid (PA), and the aforementioned pyridoxal 5’-phosphate (PLP). One of these forms, PA, is in fact a catabolite whose presence is found in excreted urine. For a person to absorb some of these active forms of vitamin B6 such as PLP or PMP they must first be dephosphorylized. This done via an alkaline enzyme phosphatase. There are a wide variety of biproducts from the metabolism in question, most of which find there ways into the urine and from there are excreted. One such biproduct is 4-pyridoxic acid. In fact this last biproduct is found in such large quantities that estimates of vitamin B6 metabolism birproducts show that 4-pyridoxic acid is as much as 40-60% of all the biproducts.Of course, it is not the only product of metabolism. Others include,include pyridoxal, pyridoxamine, and pyridoxine.
Metabolic

SMP0000065

Pw000039 View Pathway

Ubiquinone Biosynthesis

Ubiquinone is also known as coenzyme Q10. It is a 1,4-benzoquinone, where Q refers to the quinone chemical group, and 10 refers to the isoprenyl chemical subunits. Ubiquinone is a carrier of hydrogen atoms (protons plus electrons) and functions as an ubiquitous coenzyme in redox reactions, where it is first reduced to the enzyme-bound intermediate radical semiquinone and in a second reduction to ubiquinol (Dihydroquinone; CoQH2). Ubiquinone is not tightly bound or covalently linked to any known protein complex but is very mobile. In eukaryotes ubiquinones were found in the inner mito-chondrial membrane and in other membranes such as the endoplasmic reticulum, Golgi vesicles, lysosomes and peroxisomes. The benzoquinone portion of Coenzyme Q10 is synthesized from tyrosine, whereas the isoprene sidechain is synthesized from acetyl-CoA through the mevalonate pathway. The mevalonate pathway is also used for the first steps of cholesterol biosynthesis. The enzyme para-hydroxybenzoate polyprenyltransferase catalyzes the condensation of p-hydroxybenzoate with polyprenyl diphosphate to generate ubiquinone.
Metabolic

SMP0000054

Pw000022 View Pathway

Fatty Acid Elongation in Mitochondria

Cells typically contain large amounts of C18 and C20 fatty acids. Longer chain fatty acids are found in certain specialized tissues (myelin contains high amounts of C22 and C24 components). Even longer chain fatty acids are derived from either dietary sources or from elongation of C16-CoA or C18-CoA formed by the cytoplasmic fatty acid synthetase system. All of the fatty acids needed by the body can be synthesized from palmitate (C16:0) except the essential, polyunsaturated fatty acids such as linoleate and linolenate. To create longer, shorter, oxidized, reduced fatty acids, palmitic acid is subjected to enzymatic reactions by reductases, hydroxylases, elongases and mixed function oxidases. There are 3 major processes that modify palmitic acid: elongation, desaturation and hydroxylation. Elongation of fatty acids may occur at endoplasmic reticulum where fatty acid molecules of length up to C24 may be produced. Mitochondrial elongation may result in fatty acids up to C16 in length. Fatty acid elongation in mitochondria is essentially the reverse of beta-oxidation for fatty acid oxidation. In particular, both pathways make use of acetyl-CoA acyltransferase, 3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase. The final step of fatty acid elongation uses enoyl-CoA reductase (not part of the beta-oxidation pathway). The elongation takes place in the mitochondrial matrix. In liver and kidney fatty acid elongation operates best in the presence of both NADH and NADPH, whereas in heart and skeletal muscle, only NADH is required. The mitochondrial pathway is important for elongating fatty acids containing 14 or fewer carbon atoms. Short chain fatty acids (SCFA) are fatty acids with aliphatic tails of less than six carbons. Medium chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6Š—–12 carbons. Long chain fatty acids (LCFA) are fatty acids with aliphatic tails longer than 12 carbons. Very Long chain fatty acids (VLCFA) are fatty acids with aliphatic tails longer than 22 carbons.
Metabolic

SMP0000052

Pw000161 View Pathway

Beta Oxidation of Very Long Chain Fatty Acids

The degradation of fatty acids occurs is many ways, but for the most part in most species it occurs mainly through the beta-oxidation cycle. Take mammals for example, in this subset of species we find that beta-oxidation takes place not only in mitochondria, but in peroxisomes as well. In contrast, it tends to be the case that in plants and fungi beta-oxidation is only seen in peroxisomes. The reason the beta-oxidation cycle is found to occur in both mitochondria and peroxisomes in mammals is thought to be that extremely long chain fatty acids will in fact undergo oxidation in both locations, an initial or first oxidation in peroxisomes and second oxidation in the mitochondria. There is however a difference between the oxidation cycle which occurs in both these organelles. Namely, that the oxidation undergone in peroxisomes does not have any coupling to ATP synthesis, unlike the corresponding oxidation which occurs in the mitochondria. We find rather that electrons are passed to molecules of oxygen, which produces hydrogen peroxide. Moreover, there is an enzyme which is found only peroxisomes which ties into this process. It can turn hydrogen peroxide back into water and oxygen and is catalase. To expound further the differences between the oxidation cycle found in the peroxisomes and the mitchondria consider the following three key differences. One, in the peroxisome the beta-oxidation cycle takes as a necessary input a special enzyme called, peroxisomal carnitine acyltransferase, which is needed to move an activated acyl group from outside the peroxisome to inside it. In mitochondrial oxidation similar but different enzymes are used called carnitine acyltransferase I and II. Difference number two is that oxidation in the peroxisome commences with catalysis induced by an enzyme called acyl CoA oxidase. Also, it should be noted that another enzyme called beta-ketothiolase which aids in peroxisomal beta-oxidation has a substrate specificity which differs from that of the mitochondrial beta-ketothiolase. Turning now to how the oxidation cycle function in mitochondria, note that the mitochondrial beta-oxidation pathway is composed of four repeating reactions that take place with each fatty acid molecule. The oxidation of fatty acid chains is a process of progress through repetition. With each turn of the cycle two carbons are removed from the fatty acid chain and the energy of the chemical bonds once housed by the molecule is captured by the reduced energy carriers NADH and FADH2. Acetyl-CoA is created in this 4 step reaction beta-oxidation process and is sent to the TCA cycle. Once inside the TCA cycle, the process of oxidation continues until even the acetyl-CoA is oxidized to CO2. More NADH and FADH2 result.
Metabolic

SMP0000072

Pw000003 View Pathway

Glutamate Metabolism

Glutamate is one of the non-essential amino acids that is produced by the body. Glutamate is precursor for many nucleic acids and proteins in addition to its role in the central nervous system. It is an excitatory neurotransmitter and has a role in neuronal plasticity, affecting memory and learning. Glutamate plays a role in numerous metabolic pathways. Dysfunctional glutamate metabolism may cause disorders such as: gyrate atrophy, hyperammonemia, γ-hydoxybutyric aciduria, hemolytic anemia, and 5-oxoprolinuria.
Metabolic

SMP0000045

Pw000008 View Pathway

Amino Sugar Metabolism

Amino sugars are sugar molecules containing an amine group. They make up many polysaccharides including, glycosaminoglycans or mucopolysaccharides.
Metabolic

SMP0000127

Pw000046 View Pathway

Glucose-Alanine Cycle

The glucose-alanine cycle—also referred to in the literature as the Cahill cycle or the alanine cycle—involves muscle protein being degraded to provide more glucose to generate additional ATP for muscle contraction. It allows pyruvate and glutamate to be transported out of muscle tissue to the liver where gluconeogenesis takes place to supply the muscle tissue with more glucose as mentioned previously. To initiate the cycle, muscle and tissues that catabolize amino acids for fuel generate amino groups—most commonly in the form of glutamate—through the process of transamination. These amino groups are transferred via alanine aminotransferase to pyruvate (a product of glycolysis) to form alanine and alpha-ketoglutarate. Alanine subsequently moves through the circulatory system to the liver where the reaction previously catalyzed by alanine aminotransferase is reversed to produce pyruvate. This pyruvate is converted into glucose through the process of gluconeogenesis which subsequently is transported back to the muscle tissue. Meanwhile, glutamate dehydrogenase in the mitochondria catabolizes glutamate into ammonium. Ammonium moves on to form urea in the urea cycle.
Metabolic

SMP0000654

Pw000630 View Pathway

Aerobic Glycolysis (Warburg Effect)

The Warburg Effect refers to the phenomenon that occurs in most cancer cells where instead of generating energy with a low rate of glycolysis followed by oxidizing pyruvate via the Krebs cycle in the mitochondria, the pyruvate from a high rate of glycolysis undergoes lactic acid fermentation in the cytosol. As the Krebs cycle is an aerobic process, in normal cells lactate production is reserved for anaerobic conditions. However, cancer cells preferentially utilize glucose for lactate production via this “aerobic glycolysis”, even when oxygen is plentiful. The Warburg Effect is thought to be the result of mutations to oncogenes and tumour suppressor genes. It may be an adaptation to low-oxygen environments within tumours, the result of cancer genes shutting down the mitochondria, or a mechanism to aid cell proliferation via increased glycolysis. Proliferation may occur due to the accumulation of glycolytic intermediates (which lead to the production of nucleotides, amino acids, and fatty acids) after the final enzymatic reaction of glycolysis (phosphoenolpyruvate into pyruvate) is slowed down. This reaction produces lactic acid which leads to a low pH microenvironment and the lactate shuttle can activate angiogenesis factors from surrounding cells. The Warburg Effect involves numerous pathways, including growth factor stimulation, transcriptional activation, and glycolysis promotion.
Metabolic

SMP0000028

Pw000015 View Pathway

Caffeine Metabolism

Caffeine is obtained from diet including coffee and other beverages and is absorbed in the stomach and small intestine. In the liver, the cytochrome P450 oxidase enzyme system and specifically CYP1A2 metabolizes caffeine into paraxanthine to increase lipolysis and increase free fatty acids and glycerol levels in the blood, theobromine to dilate blood vessels and increase urine volume and theophylline which relaxes bronchi smooth muscles. In the lysosome, these metabolites undergo further metabolism into methyluric acids before being excreted in the urine. There is genetic variability in the metabolism of caffeine due to the polymorphism of CYP1A2. This variability can affect the pharmacokinetic and pharmacodynamic properties of caffeine and may affect an individual's consumption.
Metabolic
Showing 111 - 120 of 65005 pathways