Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.


Showing 55481 - 55500 of 55734 compounds

Compound ID

Compound

Pathways

PW_C096553

Image HMDB0092540: View Metabocard

CL(i-14:0/i-16:0/i-24:0/i-20:0)

CL(i-14:0/i-16:0/i-24:0/i-20:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-16:0/i-24:0/i-20:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isohexadecanoic acid at the C-2 position, one chain of isotetracosanoic acid at the C-3 position, and one chain of isoeicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096554

Image HMDB0092541: View Metabocard

CL(i-14:0/i-16:0/i-24:0/i-21:0)

CL(i-14:0/i-16:0/i-24:0/i-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-16:0/i-24:0/i-21:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isohexadecanoic acid at the C-2 position, one chain of isotetracosanoic acid at the C-3 position, and one chain of isoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096555

Image HMDB0092543: View Metabocard

CL(i-14:0/i-16:0/i-24:0/i-22:0)

CL(i-14:0/i-16:0/i-24:0/i-22:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-16:0/i-24:0/i-22:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isohexadecanoic acid at the C-2 position, one chain of isotetracosanoic acid at the C-3 position, and one chain of isodocosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096556

Image HMDB0092544: View Metabocard

CL(i-14:0/i-16:0/i-24:0/i-24:0)

CL(i-14:0/i-16:0/i-24:0/i-24:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-16:0/i-24:0/i-24:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isohexadecanoic acid at the C-2 position, one chain of isotetracosanoic acid at the C-3 position, and one chain of isotetracosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096557

Image HMDB0092853: View Metabocard

CL(i-14:0/i-17:0/18:2(9Z,11Z)/a-13:0)

CL(i-14:0/i-17:0/18:2(9Z,11Z)/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/18:2(9Z,11Z)/a-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of (9Z,11Z)-octadecadienoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096558

Image HMDB0092859: View Metabocard

CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-12:0)

CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-12:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of (9Z,11Z)-octadecadienoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096559

Image HMDB0092897: View Metabocard

CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-13:0)

CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/18:2(9Z,11Z)/i-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of (9Z,11Z)-octadecadienoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096560

Image HMDB0092640: View Metabocard

CL(i-14:0/i-17:0/a-13:0/18:2(9Z,11Z))

CL(i-14:0/i-17:0/a-13:0/18:2(9Z,11Z)) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/18:2(9Z,11Z)), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of (9Z,11Z)-octadecadienoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096561

Image HMDB0092608: View Metabocard

CL(i-14:0/i-17:0/a-13:0/a-13:0)

CL(i-14:0/i-17:0/a-13:0/a-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/a-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of anteisotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096562

Image HMDB0092620: View Metabocard

CL(i-14:0/i-17:0/a-13:0/a-15:0)

CL(i-14:0/i-17:0/a-13:0/a-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/a-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of anteisopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096563

Image HMDB0092632: View Metabocard

CL(i-14:0/i-17:0/a-13:0/a-17:0)

CL(i-14:0/i-17:0/a-13:0/a-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/a-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of anteisoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096564

Image HMDB0092656: View Metabocard

CL(i-14:0/i-17:0/a-13:0/a-21:0)

CL(i-14:0/i-17:0/a-13:0/a-21:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/a-21:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of anteisoheneicosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096565

Image HMDB0092670: View Metabocard

CL(i-14:0/i-17:0/a-13:0/a-25:0)

CL(i-14:0/i-17:0/a-13:0/a-25:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/a-25:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of anteisopentacosanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096566

Image HMDB0092601: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-12:0)

CL(i-14:0/i-17:0/a-13:0/i-12:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-12:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isododecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096567

Image HMDB0092606: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-13:0)

CL(i-14:0/i-17:0/a-13:0/i-13:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-13:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isotridecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096568

Image HMDB0092613: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-14:0)

CL(i-14:0/i-17:0/a-13:0/i-14:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-14:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isotetradecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096569

Image HMDB0092618: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-15:0)

CL(i-14:0/i-17:0/a-13:0/i-15:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-15:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isopentadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096570

Image HMDB0092625: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-16:0)

CL(i-14:0/i-17:0/a-13:0/i-16:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-16:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isohexadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096571

Image HMDB0092630: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-17:0)

CL(i-14:0/i-17:0/a-13:0/i-17:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-17:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isoheptadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).

PW_C096572

Image HMDB0092639: View Metabocard

CL(i-14:0/i-17:0/a-13:0/i-18:0)

CL(i-14:0/i-17:0/a-13:0/i-18:0) is a cardiolipin (CL). Cardiolipins (bisphosphatidyl glycerol) are an important component of the inner mitochondrial membrane, where they constitute about 20% of the total lipid. Cardiolipins are a "double" phospholipid because they have four fatty acid tails, instead of the usual two. While most lipids are made in the endoplasmic reticulum, cardiolipin is synthesized on the matrix side of the inner mitochondrial membrane. They are highly abundant in metabolically active cells (heart, muscle) and play an important role in the blood clotting process. CL(i-14:0/i-17:0/a-13:0/i-18:0), in particular, consists of one chain of isotetradecanoic acid at the C-1 position, one chain of isoheptadecanoic acid at the C-2 position, one chain of anteisotridecanoic acid at the C-3 position, and one chain of isooctadecanoic acid at the C-4 position. While the theoretical charge of cardiolipins is -2, under normal physiological conditions (pH near 7), the molecule may carry only one negative charge. Newly synthesized cardiolipins undergo remodeling, a process carried out by the enzyme tafazzin. A mutated tafazzin gene disrupts this post-synthetic remodeling and causes Barth syndrome (BTHS), an X-linked human disease (PMID: 16973164). BTHS patients seem to lack acyl specificity and consequently, many potential cardiolipin species can exist (PMID: 16226238).
Showing 55481 - 55500 of 55734 compounds