Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 31 - 40 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0000107

Pw000270 View Pathway

Zoledronate Action Pathway

Zoledronate (also named zoledronic acid, Zometa or Reclast) is a type of medication that used to treat numbers of bone diseases because of its affinity for hydroxyapatite. Zoledronate targets farnesyl pyrophosphate (FPP) synthase by inhibiting the function of this enzyme in the mevalonate pathway, which prevent the biosynthesis of Geranyl-PP and farnesyl pyrophosphate. Geranyl-PP and farnesyl pyrophosphate are important for geranylgeranylation and farnesylation of GTPase signalling proteins. Lack of Geranyl-PP and farnesyl pyrophosphate will result in decreased rate of bond resorption and turnover as well as block the osteoclast activity, which lead to an increasing mass gain in bone (i.e. net gain in bone mass).
Drug Action

SMP0129694

Pw131313 View Pathway

Zolbetuximab Drug Metabolism

Metabolic

SMP0130250

Pw131869 View Pathway

Zofin Drug Metabolism

Metabolic

SMP0144931

Pw146599 View Pathway

Zofenopril Drug Metabolism Action Pathway

Drug Action
  • Zofenopril

SMP0126074

Pw127650 View Pathway

Zofenopril Action Pathway

Zofenopril is a specific angiotensin-converting enzyme (ACE) inhibitor. It is used in the treatment of acute myocardial infaction (AMI), hypertension and mild to mmoderate hypertension. Zafenopril has the ability to improve endothelial function and protect against ischemia. Zofenopril is a prodrug, once absorbed, the cell metabolizes it in zofenoprilat. Zefonoprilat is the molecule that does the inhibition of the ACEs. This interaction blocks the conversion of angiotensin I to angiotensin II. This production of angiotensin II modulates blood pressure. Angiotensin II causes vasoconstriction and this leads to an increase of blood pressure. This system starts with the renin being released from prorenin due to kallikrein. After that, renin will cleave angiotensinogen to release angiotensin I. Angiotensin II binds to AT1 and AT2, these receptors will activate many signaling cascades that will lead to the retaining of sodium and water in the renal tubules. At the same time, these receptors will activate signaling cascades that lead to the stimulation of aldosterone release from the adrenal gland (an important role in the renin-angiotensin-aldosterone system (RAAS)).
Drug Action

SMP0145253

Pw146921 View Pathway

Zirconium chloride hydroxide Drug Metabolism Action Pathway

Drug Action
  • Zirconium chloride hydroxide

SMP0126471

Pw128070 View Pathway

Ziprasidone Serotonin Action Action Pathway

Ziprasidone is an atypical antipsychotic used to treat schizophrenia, bipolar mania, and acute agitation in schizophrenic patients. It also indicated improvement on the manic syndrome subscale that measures symptoms of mania such as mood, insomnia, excessive energy and activity, and overall behavior and ideation. Ziprasidone is also used as off-labeled for monotherapy in acute hypomania, monotherapy as maintenance treatment for adult patients with bipolar I disorder, hyperactivity treatment, and for the treatment of delirium in the ICU. Ziprasidone presents in both oral capsule and intramuscular injection formulations. Ziprasidone is an atypical antipsychotic that has a binding affinity for dopaminergic (DA), serotonergic (5HT), adrenergic (a1), and histaminergic (HA) receptors. Regarding treatment for schizophrenia, antagonism of the dopamine (D2) receptor in the mesolimbic pathway has proven efficacious in diminishing positive symptoms, whereas the antagonism of the 5HT2A receptor in the mesocortical pathway has demonstrated reduction of negative symptoms of psychosis. Its efficacy and mechanism of action for treating bipolar disorder are unknown. The antagonization of both histaminergic and adrenergic (a1) receptors can induce somnolence and orthostatic hypotension.
Drug Action

SMP0174624

Pw176299 View Pathway

Ziprasidone Predicted Metabolism Pathway

Metabolites of Ziprasidone are predicted with biotransformer.
Metabolic

SMP0175141

Pw176828 View Pathway

Ziprasidone H1-Antihistamine Immune Response Action Pathway

Ziprasidone is a weak H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. Reducing the activity of the NF-κB immune response transcription factor through the phospholipase C and the phosphatidylinositol (PIP2) signalling pathways also decreases antigen presentation and the expression of pro-inflammatory cytokines, cell adhesion molecules, and chemotactic factors. Furthermore, lowering calcium ion concentration leads to increased mast cell stability which reduces further histamine release. First-generation antihistamines readily cross the blood-brain barrier and cause sedation and other adverse central nervous system (CNS) effects (e.g. nervousness and insomnia). Second-generation antihistamines are more selective for H1-receptors of the peripheral nervous system (PNS) and do not cross the blood-brain barrier. Consequently, these newer drugs elicit fewer adverse drug reactions.
Drug Action

SMP0175049

Pw176736 View Pathway

Ziprasidone H1-Antihistamine Blood Vessel Constriction Action Pathway

Ziprasidone is a weak H1-antihistamine. H1-antihistamines interfere with the agonist action of histamine at the H1 receptor and are administered to attenuate inflammatory process in order to treat conditions such as allergic rhinitis, allergic conjunctivitis, and urticaria. H1-antihistamines act on H1 receptors in T-cells to inhibit the immune response, in blood vessels to constrict dilated blood vessels, and in smooth muscles of lungs and intestines to relax those muscles. Allergies causes blood vessel dilation which causes swelling (edema) and fluid leakage. Ziprasidone inhibits the H1 histamine receptor on blood vessel endothelial cells. This normally activates the Gq signalling cascade which activates phospholipase C which catalyzes the production of Inositol 1,4,5-trisphosphate (IP3) and Diacylglycerol (DAG). Because of the inhibition, IP3 doesn't activate the release of calcium from the sarcoplasmic reticulum, and DAG doesn't activate the release of calcium into the cytosol of the endothelial cell. This causes a low concentration of calcium in the cytosol, and it, therefore, cannot bind to calmodulin. Calcium bound calmodulin is required for the activation of the calmodulin-binding domain of nitric oxide synthase. The inhibition of nitric oxide synthesis prevents the activation of myosin light chain phosphatase. This causes an accumulation of myosin light chain-phosphate which causes the muscle to contract and the blood vessel to constrict, decreasing the swelling and fluid leakage from the blood vessels caused by allergens.
Drug Action
Showing 31 - 40 of 65005 pathways