Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 49831 - 49840 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0124341

Pw125797 View Pathway

Acylcarnitine (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine

(10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA reacts with L-carnitine to form (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA and L-carnitine. (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124342

Pw125798 View Pathway

Acylcarnitine (9Z,11E,13Z)-Octadeca-9,11,13-trienoylcarnitine

(9Z,11E,13Z)-Octadeca-9,11,13-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (9Z,11E,13Z)-octadeca-9,11,13-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-CoA reacts with L-carnitine to form (9Z,11E,13Z)-octadeca-9,11,13-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (9Z,11E,13Z)-octadeca-9,11,13-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (9Z,11E,13Z)-octadeca-9,11,13-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (9Z,11E,13Z)-octadeca-9,11,13-trienoyl-CoA and L-carnitine. (9Z,11E,13Z)-Octadeca-9,11,13-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (9Z,11E,13Z)-octadeca-9,11,13-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124343

Pw125799 View Pathway

Acylcarnitine (5Z,9Z,12Z)-Octadeca-5,9,12-trienoylcarnitine

(5Z,9Z,12Z)-Octadeca-5,9,12-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (5Z,9Z,12Z)-octadeca-5,9,12-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (5Z,9Z,12Z)-octadeca-5,9,12-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (5Z,9Z,12Z)-octadeca-5,9,12-trienoyl-CoA reacts with L-carnitine to form (5Z,9Z,12Z)-octadeca-5,9,12-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (5Z,9Z,12Z)-octadeca-5,9,12-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (5Z,9Z,12Z)-octadeca-5,9,12-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (5Z,9Z,12Z)-octadeca-5,9,12-trienoyl-CoA and L-carnitine. (5Z,9Z,12Z)-Octadeca-5,9,12-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (5Z,9Z,12Z)-octadeca-5,9,12-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124344

Pw125800 View Pathway

Acylcarnitine (8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine

(8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (8E,10E,12Z)-octadeca-8,10,12-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (8E,10E,12Z)-octadeca-8,10,12-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (8E,10E,12Z)-octadeca-8,10,12-trienoyl-CoA reacts with L-carnitine to form (8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (8E,10E,12Z)-octadeca-8,10,12-trienoyl-CoA and L-carnitine. (8E,10E,12Z)-octadeca-8,10,12-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (8E,10E,12Z)-octadeca-8,10,12-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124345

Pw125801 View Pathway

Acylcarnitine (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine

(9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA reacts with L-carnitine to form (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA and L-carnitine. (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124346

Pw125802 View Pathway

Acylcarnitine (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine

(9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoyl-CoA reacts with L-carnitine to form (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoyl-CoA and L-carnitine. (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (9Z,12Z,15Z)-17-hydroxyoctadeca-9,12,15-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124347

Pw125803 View Pathway

Acylcarnitine (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine

(10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA reacts with L-carnitine to form (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA and L-carnitine. (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124348

Pw125804 View Pathway

Acylcarnitine (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine

(10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA reacts with L-carnitine to form (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA and L-carnitine. (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124349

Pw125805 View Pathway

Acylcarnitine (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine

(6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl-CoA reacts with L-carnitine to form (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl-CoA and L-carnitine. (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (6Z,9Z,12Z,15Z)-octadeca-6,9,12,15-tetraenoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124350

Pw125806 View Pathway

Acylcarnitine 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine

7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioyl-CoA reacts with L-carnitine to form 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioyl-CoA and L-carnitine. 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing 7,14-dihydroxyoctadeca-4,8,10,12-tetraenedioylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic
Showing 49831 - 49840 of 65006 pathways