Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 171 - 180 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0125063

Pw126596 View Pathway

Acyclovir Action Pathway (New)

Acyclovir is a guanosine analog used to treat herpes simplex, varicella zoster, herpes zoster, herpes labialis, and acute herpetic keratitis. Acyclovir is becomes acyclovir monophosphate due to the action of viral thymidine kinase.5 Acyclovir monophosphate is converted to the diphosphate form by guanylate kinase.1 Acyclovir diphosphate is converted to acyclovir triphosphate by nucleoside diphosphate kinase, pyruvate kinase, creatine kinase, phosphoglycerate kinase, succinyl-CoA synthetase, phosphoenolpyruvate carboxykinase and adenylosuccinate synthetase. Acyclovir triphosphate inhibits the activity of DNA polymerase by competing with its substrate dGTP. Acyclovir triphosphate also gets incorporated into viral DNA, but since it lacks the 3'-OH group which is needed to form the 5′ to 3′ phosphodiester linkage essential for DNA chain elongation, this causes DNA chain termination, preventing the growth of viral DNA. Less Viral DNA is transported into the nucleus, therefore, less viral DNA is integrated into the host DNA. Less viral proteins produced, fewer viruses can form.
Drug Action

SMP0143226

Pw144894 View Pathway

Acyclovir Drug Metabolism Action Pathway

Drug Action
  • Acyclovir

SMP0123494

Pw124950 View Pathway

Acylcarnitine (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine

(10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoyl-CoA reacts with L-carnitine to form (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoyl-CoA and L-carnitine. (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E)-11-(3,4-dimethyl-5-pentylfuran-2-yl)undec-10-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0123493

Pw124949 View Pathway

Acylcarnitine (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine

(10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoyl-CoA reacts with L-carnitine to form (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoyl-CoA and L-carnitine. (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E)-11-(3,4-dimethyl-5-propylfuran-2-yl)undec-10-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124017

Pw125473 View Pathway

Acylcarnitine (10E)-8-Hydroxydodec-10-enoylcarnitine

(10E)-8-Hydroxydodec-10-enoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E)-8-hydroxydodec-10-enoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E)-8-hydroxydodec-10-enoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E)-8-hydroxydodec-10-enoyl-CoA reacts with L-carnitine to form (10E)-8-hydroxydodec-10-enoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E)-8-hydroxydodec-10-enoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E)-8-hydroxydodec-10-enoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E)-8-hydroxydodec-10-enoyl-CoA and L-carnitine. (10E)-8-Hydroxydodec-10-enoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E)-8-hydroxydodec-10-enoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124348

Pw125804 View Pathway

Acylcarnitine (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine

(10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA reacts with L-carnitine to form (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA and L-carnitine. (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12E,14E)-16-hydroxy-9-oxooctadeca-10,12,14-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124347

Pw125803 View Pathway

Acylcarnitine (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine

(10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA reacts with L-carnitine to form (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA and L-carnitine. (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12E,14E)-9-hydroxy-16-oxooctadeca-10,12,14-trienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124341

Pw125797 View Pathway

Acylcarnitine (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine

(10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA reacts with L-carnitine to form (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA and L-carnitine. (10E,12Z)-9-hydroxyoctadeca-10,12-dienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,12Z)-9-hydroxyoctadeca-10,12-dienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124357

Pw125813 View Pathway

Acylcarnitine (10E,13E)-Nonadeca-10,13-dienoylcarnitine

(10E,13E)-Nonadeca-10,13-dienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,13E)-Nonadeca-10,13-dienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,13E)-Nonadeca-10,13-dienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,13E)-Nonadeca-10,13-dienoyl-CoA reacts with L-carnitine to form (10E,13E)-Nonadeca-10,13-dienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,13E)-Nonadeca-10,13-dienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,13E)-Nonadeca-10,13-dienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,13E)-Nonadeca-10,13-dienoyl-CoA and L-carnitine. (10E,13E)-Nonadeca-10,13-dienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,13E)-Nonadeca-10,13-dienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic

SMP0124334

Pw125790 View Pathway

Acylcarnitine (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine

(10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine is an acylcarnitine. The general role of acylcarnitines is to transport acyl-groups, organic acids and fatty acids, from the cytoplasm into the mitochondria so that they can be broken down to produce energy. As part of this process, (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoic acid is first transported into the cell via the long-chain fatty acid transport protein 1 (FATP1). Once inside the cell it undergoes a reaction to form an acyl-CoA derivative called (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoyl-CoA. This reaction is facilitated by the long-chain fatty-acid CoA ligase 1 protein, which adds a CoA moiety to appropriate acyl groups. Many acyl-CoA groups will then further react with other zwitterionic compounds such as carnitine (to form acylcarnitines) and amino acids (to form acyl amides). The carnitine needed to form acylcarnitines inside the cell is transported into the cell by the organic cation/carnitine transporter 2. In forming an acylcarnitine derivative, (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoyl-CoA reacts with L-carnitine to form (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine. This reaction is catalyzed by carnitine O-palmitoyltransferase. This enzyme resides in the mitochondrial outer membrane. While this reaction takes place, the (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine is moved into the mitochondrial intermembrane space. Following the reaction, the newly synthesized acylcarnitine is transported into the mitochondrial matrix by a mitochondrial carnitine/acylcarnitine carrier protein found in the mitochondrial inner membrane. Once in the matrix, (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine can react with the carnitine O-palmitoyltransferase 2 enzyme found in the mitochondrial inner membrane to once again form (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoyl-CoA and L-carnitine. (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoyl-CoA then enters into the mitochondrial beta-oxidation pathway to form aceytl-CoA. Acetyl-CoA can go on to enter the TCA cycle, or it can react with L-carnitine to form L-acetylcarnitine in a reaction catalyzed by Carnitine O-acetyltransferase. This reaction can occur in both directions, and L-acetylcarnitine and CoA can react to form acetyl-CoA and L-carnitine in certain circumstances. Finally, acetyl-CoA in the cytosol can be catalyzed by acetyl-CoA carboxylase 1 to form malonyl-CoA, which inhibits the action of carnitine O-palmitoyltransferase 1, thereby preventing (10E,15Z)-9,12,13-trihydroxyoctadeca-10,15-dienoylcarnitine from forming and thereby preventing it from being transported into the mitochondria.
Metabolic
Showing 171 - 180 of 65006 pathways