Quantitative metabolomics services for biomarker discovery and validation.
Specializing in ready to use metabolomics kits.
Your source for quantitative metabolomics technologies and bioinformatics.
Loader

Filter by Pathway Type:



Showing 71 - 80 of 605359 pathways
SMPDB ID Pathway Name and Description Pathway Class Chemical Compounds Proteins

SMP0125696

Pw127262 View Pathway

Zellweger Syndrome

Zellweger syndrome, also known as cerebrohepatorenal syndrome, is an autosomal recessive peroxisome biogenesis disorder that is part of the family of Zellweger spectrum disorders. It is caused by a defect in one of 12 or more of the PEX genes (PEX1, 2, 3, 5, 6, 10, 12, 13, 14, 16, 19 and 26) that produce proteins called peroxins. Peroxins are used in the formation of peroxisomes, and can be involved in recognition of proteins targeted for the peroxisome, as well as their transport into the peroxisome. Peroxisomes typically break down both very long chain and branched fatty acids, but if they aren't present, these fatty acids build up in the blood and body, harming organs such as the brain and liver. Additionally, due to the fact that some processes, such as plasmalogen biosynthesis, occur in or using peroxisomes, and can lead to deficiencies in plasmalogens. These are important in brain and lung function, leading to other symptoms. Zellweger syndrome is characterized by an increase in levels of very long chain fatty acids in the blood plasma, as well as more visible physical symptoms, such as an abnormally large or small head at birth, characteristic facial features and poor muscle tone, which can lead to an inability of infants to feed. Other symptoms include an enlarged liver, skeletal abnormalities and low CNS function. Infants very rarely live longer than one year, and the only treatment is for symptoms the patient is experiencing, not for the syndrome itself.
Disease

SMP0000316

Pw000195 View Pathway

Zellweger Syndrome

Zellweger syndrome, also known as cerebrohepatorenal syndrome, is an autosomal recessive peroxisome biogenesis disorder that is part of the family of Zellweger spectrum disorders. It is caused by a defect in one of 12 or more of the PEX genes (PEX1, 2, 3, 5, 6, 10, 12, 13, 14, 16, 19 and 26) that produce proteins called peroxins. Peroxins are used in the formation of peroxisomes, and can be involved in recognition of proteins targeted for the peroxisome, as well as their transport into the peroxisome. Peroxisomes typically break down both very long chain and branched fatty acids, but if they aren't present, these fatty acids build up in the blood and body, harming organs such as the brain and liver. Additionally, due to the fact that some processes, such as plasmalogen biosynthesis, occur in or using peroxisomes, and can lead to deficiencies in plasmalogens. These are important in brain and lung function, leading to other symptoms. Zellweger syndrome is characterized by an increase in levels of very long chain fatty acids in the blood plasma, as well as more visible physical symptoms, such as an abnormally large or small head at birth, characteristic facial features and poor muscle tone, which can lead to an inability of infants to feed. Other symptoms include an enlarged liver, skeletal abnormalities and low CNS function. Infants very rarely live longer than one year, and the only treatment is for symptoms the patient is experiencing, not for the syndrome itself.
Disease

SMP0144613

Pw146281 View Pathway

Zeaxanthin Drug Metabolism Action Pathway

Drug Action

SMP0130886

Pw132554 View Pathway

Zeaxanthin Drug Metabolism

Zeaxanthin is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Zeaxanthin passes through the liver and is then excreted from the body mainly through the kidney.
Metabolic

SMP0128232

Pw129851 View Pathway

Zea mays pollen Drug Metabolism

Metabolic

SMP0145237

Pw146905 View Pathway

Zanubrutinib Drug Metabolism Action Pathway

Drug Action
  • Zanubrutinib

SMP0130872

Pw132540 View Pathway

Zanubrutinib Drug Metabolism

Zanubrutinib is a drug that is not metabolized by the human body as determined by current research and biotransformer analysis. Zanubrutinib passes through the liver and is then excreted from the body mainly through the kidney.
Metabolic
  • Zanubrutinib

SMP0129374

Pw130993 View Pathway

Zanthoxylum clava-herculis whole Drug Metabolism

Metabolic

SMP0129400

Pw131019 View Pathway

Zanthoxylum clava-herculis bark Drug Metabolism

Metabolic

SMP0130196

Pw131815 View Pathway

Zansecimab Drug Metabolism

Metabolic
Showing 71 - 80 of 65006 pathways